Next-Gen Digital Health: The Creation of Innovative Services and Businesses (Part 2)

  • URLをコピーしました!

In my previous post, I discussed medical DX and digitalization, focusing on next-generation AI technologies known as “generative AI” and “foundation models” and how they can create value when combined with “medical and health data.” I explained three key terms of next-generation digital healthcare.

This time, I will explain what new values humanity can create by acquiring this new technology and combining it with medical and health data.

目次

Innovative Services and Businesses Created

What Digital Can Do for Health: Digital Medicine and Digital Therapeutics

Lifestyle diseases are caused by daily habits such as unhealthy eating, lack of exercise, smoking, and excessive drinking. Examples include hypertension, diabetes, heart disease, and dyslipidemia (high cholesterol). Since lifestyle habits are the cause, improving them, i.e., behavioral change, is the fundamental key to preventing and treating lifestyle diseases.

While digital technology cannot directly remove cancer or pharmacologically eliminate viruses from the body, it cannot make one quit smoking through surgery or make one eat vegetables and exercise more through medication. Our higher brain functions, cognitive functions, are responsible for our choices and actions. Therefore, supporting or influencing our cognitive functions and promoting behavioral change is crucial for the fundamental prevention and treatment of lifestyle diseases. Digital medicine and digital therapeutics support this.

Medical Device Programs to Promote Behavioral Change

Medical device programs to promote behavioral change (also known as Software as a Medical Device (SaMD)) aim to improve health by precisely understanding an individual’s health status and providing optimized interventions.

Specifically, AI analyzes data collected from smartphones and wearable devices and provides personalized advice and reminders to users. This makes it easier for users to continue healthy behaviors, effectively managing preventive medicine and chronic diseases.

Policy Trends

The Japanese government is actively promoting the development and dissemination of medical device programs to promote behavioral change in the healthcare field. For example, the Ministry of Health, Labour and Welfare and the Ministry of Economy, Trade and Industry announced the “DX(Digital Transformation) Action Strategies in Healthcare for SaMD (Software as a Medical Device) 2”, or “DASH for SaMD2”, in September 2023. The primary goals are to enhance the predictability of regulatory approval and insurance coverage, and to promote development and market introduction both domestically and internationally. This includes concepts such as two-stage approval, guidance for home-use SaMD, trial priority reviews, strengthening PMDA systems, and supporting international expansion. This aims to achieve the early practical application and market acquisition of innovative SaMD (Ministry of Health, Labour and Welfare & Ministry of Economy, Trade and Industry, 2023).

Additionally, in the 2024 medical fee revision, the “Medical Device Instruction and Management Fee” has been introduced to evaluate the use of SaMD, ensuring that treatments using medical devices are appropriately evaluated and compensated as medical fees (Ministry of Health, Labour and Welfare, 2024).

Furthermore, the Ministry of Economy, Trade and Industry has formulated the “Guidelines for the Development of Medical Device Programs to Promote Behavioral Change in the Healthcare Field.” These guidelines support developers in efficiently developing products that comply with regulations, detailing processes from product design and development to market launch (Ministry of Economy, Trade and Industry, 2023).

With such support from the public sector, it is our role as healthcare providers and entrepreneurs to create and deliver new value to patients!

Examples of SaMD for Promoting Behavioral Change

Next, let’s look at specific examples of how SaMD can be useful in promoting behavioral change.

The figure below shows how personalized AI uses individual data from A, B, and C to send optimal messages. For example, personalized AI understands A’s preference and cognitive tendencies, suggesting a salad by saying, “You will look even cooler if you lose weight!” It suggests a hot pot to B, knowing their dietary trends, saying, “A hot pot is warming this season,” and encourages C to eat vegetables by saying, “Your next blood test will be worrying if you continue this diet.”

Personalized AI uses individual lifestyle and medical information to promote optimal behavioral change. By understanding individual cognitive characteristics, it can promote behavioral change through personalized advice and nudges, supporting optimal actions based on personal risk preferences and time discounting, helping maintain a healthy lifestyle.

Digital Technology for Personalized Medicine

As I mentioned before, digitalization, especially next-generation AI technologies like “generative AI” and “foundation models” combined with “medical and health data (especially time-series data),” enables more detailed personalized medicine.

Precision medicine provides optimal treatment by considering individual genetic, environmental, and lifestyle differences. Unlike conventional “one-size-fits-all” treatments, it emphasizes personalized medicine perspectives.

At the core of precision medicine is genome analysis. Additionally, the use of big data and AI allows the development of algorithms to analyze vast amounts of medical data and find the best treatment for each patient. This enables more accurate diagnoses and treatments. By designing tailor-made treatment plans based on each patient’s characteristics, it is expected to improve treatment effects and reduce side effects.

Advances in medical DX also support precision medicine. With the spread of electronic health records (EHR), doctors can quickly access patient medical data, monitor health status in real-time through wearable devices and smartphone apps, and create individual treatment plans. The use of telemedicine and online medical services is also expanding, providing specialized medical care beyond geographical constraints.

The benefits of precision medicine and personalized medicine include improved treatment effects, reduced side effects, and early detection and prevention of diseases. Of course, there are challenges such as cost, data privacy, and technology dissemination.

Precision medicine is gaining attention as an innovative approach to the future of healthcare, realizing more effective and efficient healthcare delivery and contributing to improving patients’ quality of life (QOL) with the advancement of digital technology. By incorporating personalized medical perspectives, more personalized treatment becomes possible, providing optimal care for each patient.

Passing on the Healthcare We Enjoy to the Next Generation: Open Innovation

Previously, I introduced “Formula of Life” technology, which models the overall picture of individuals by utilizing vast personal data ranging from wearable devices and behavioral economics-based cognitive tendencies to time-series data and genomic-level molecular data.

Wilhelm Röntgen, the discoverer of X-rays, believed his technology should contribute to the advancement of science for all. Today, next-generation AI technologies such as foundation models, represented by large-scale language models like ChatGPT, are considered essential technologies that humanity should share. OpenAI, which developed ChatGPT, has a mission statement: “Our mission is to ensure that artificial general intelligence benefits all of humanity.”

I aim to use ” Formula of Life” as a foundation for AI technology in the health and medical field, as an essential technology that humanity should share, to contribute to the sustainability and development of healthcare through open innovation.

In economics and information technology, there is a term “network effects.” Network effects refer to the phenomenon where the value of a product or service increases as the number of users grows. For example, the attractiveness of social media platforms increases as more friends participate, creating a virtuous cycle that attracts new users.

Similarly, in large-scale learning models, the more data input, the more accuracy improves, and more value can be provided. Network effects become an important factor in increasing overall value as the number of users grows.

In the future, it will be more important to integrate various data related to health and healthcare and to combine interdisciplinary expertise and technology for co-creation and open innovation.

Healthcare Business Development and Startup Support Program: TrueNorth Innovation

My company, Decades Inc., offers the TrueNorth Innovation program, aimed at healthcare professionals, researchers, and business companies passionate about turning innovative ideas into reality.

TrueNorth Innovation supports business development for healthcare professionals, researchers, and business companies through the TrueNorth Meet program. It helps healthcare professionals solve challenges in clinical practice, researchers bring innovative technologies and ideas to market, and business companies develop new businesses in the health and medical field step-by-step.

If you are interested in creating innovative digital products using medical AI and data science as introduced in my previous and this post, please contact us for TrueNorth Meet Phase 1 (Free).

References

– Ministry of Health, Labour and Welfare & Ministry of Economy, Trade and Industry. (2023). ‘Strategy Package to Promote the Practical Application of Program Medical Devices 2’. Available at: [PMDA Website](https://www.pmda.go.jp/review-services/drug-reviews/review-information/devices/0018.html) (Accessed: 21 May 2024).

– Ministry of Health, Labour and Welfare. (2024). Medical Fee Revision 2024. Available at: [MHLW Website](https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000067910.html) (Accessed: 20 May 2024).

– Ministry of Economy, Trade and Industry. (2023). Guidelines for the Development of Medical Device Programs to Promote Behavioral Change in the Healthcare Field. Available at: [METI Website](https://www.meti.go.jp/policy/mono_info_service/healthcare/202303.55.pdf) (Accessed: 20 May 2024).


免責事項・注意事項等
  • 法令遵守について
    本教材はあくまで一般的な学習参考用の内容であり、医師法、薬機法、個人情報保護法、医療広告ガイドライン等の適用判断については、必ず厚生労働省・PMDA・経済産業省・各学会などの最新の法令・ガイドラインをご自身でご確認のうえご利用ください。
  • 医療行為の責任について
    本資料で紹介する AI 技術・手法は臨床診断・治療の補助を目的としていますが、最終的な診断・治療方針の決定および報告書の承認は必ず医師などの専門資格保持者が行ってください。AI の結果のみを鵜呑みにせず、Human-in-the-Loop の原則に則り、人間専門家による検証プロセスを実施してください。
    本コンテンツは、医療AIに関する技術的な学習と理解を深めることを目的としており、特定の医療行為を推奨、あるいは医学的助言を提供するものではありません。実際の臨床判断は、必ず担当の医療専門家にご相談ください。
  • プライバシー保護について
    本コース内で紹介するデータセットを利用する際は、各データセットのライセンス条件および研究倫理指針を厳守し、患者情報の匿名化・同意取得など必要な個人情報保護措置を確実に講じてください。
  • 知的財産権について
    本記事中の図表・コード・文章などを二次利用または転載する場合は、必ず引用元を明示し、権利者の許諾および適切なライセンス表記を行ってください。
  • 情報の正確性について
    本資料に記載する数値、事例、ライブラリのバージョン情報などは執筆時点の情報に基づいています。機能やライブラリはアップデートにより変更される可能性がありますので、必ず最新の公式ドキュメントや文献をご確認のうえ適宜アップデートしてご活用ください。
  • AI 活用の留意点
    本内容には AI の提案をもとに作成した部分が含まれていますが、最終的には専門家の監修・編集のもとで公開しています。特に生成系 AI を用いる場合は、ハルシネーション(誤情報)やバイアスに十分注意し、必ず人間専門家が結果を検証してください。
  • 免責事項
    本資料の利用によって生じたいかなる損害についても、著作者および提供者は一切の責任を負いません。研究・学習目的以外での利用はご遠慮ください。
  • 対象読者・前提知識
    本教材は医療従事者および AI 技術に関心のある技術者を主対象とし、Python の基礎知識や統計学の初歩的理解を前提としています。
  • 環境・互換性
    本資料で扱うコード/ライブラリは執筆時点の特定バージョンを前提としています(例:PyTorch 2.0、Transformers 4.x)。実行環境(OS、ハードウェア、依存パッケージ)によっては動作しない場合がありますのでご注意ください。
  • 免責範囲の明確化
    本教材に記載された内容はいかなる場合も「診療行為」としての効力を持ちません。製品やサービスの導入検討にあたっては、別途法務・品質保証部門との協議および正式な承認プロセスを経てください。

For J³, may joy follow you.

  • URLをコピーしました!
  • URLをコピーしました!

この記事を書いた人/About the Author

AI physician-scientist・連続起業家・元厚生労働省医系技官・医師・医学博士・ハーバード大学理学修士・ケンブリッジ大学MBA・コロンビア大学行政修士。
岡山大学医学部卒業後、内科・地域医療に従事。厚生労働省入省、医療情報技術推進室長、医療国際展開推進室長、救急・周産期医療等対策室長、災害医療対策室長等を歴任。文部科学省出向中はライフサイエンス、内閣府では食の安全、内閣官房では医療分野のサイバーセキュリティを担当。国際的には、JICA日タイ国際保健共同プロジェクトのチーフ、WHOインターンも経験。
退官後は、日本大手IT企業にて保健医療分野の新規事業開発や投資戦略に携わり、英国VCでも実務経験を積む。また、複数社起業し、医療DX・医療AI、デジタル医療機器開発等に取り組むほか、東京都港区に内科クリニックを開業し、社外取締役としても活動。
現在、大阪大学大学院医学系研究科招へい教授、岡山大学研究・イノベーション共創機構参事、ケンブリッジ大学ジャッジ・ビジネススクールAssociate、広島大学医学部客員教授として、学術・教育・研究に従事。あわせて、医療者のための医療AI教室「Medical AI Nexus」を主宰。
社会医学系指導医・専門医・The Royal Society of Medicine Fellow

コメント

コメントする

目次