Bringing AI to Healthcare—Class is Now in Session! B1

目次

Welcome to AI for Healthcare Professionals!

When you hear the term “AI,” you might think, “That has nothing to do with me,” or “It sounds too complicated.” However, in reality, AI has been utilized in medical practice and research for decades. Today, AI is closer to us than ever, supporting healthcare professionals in areas such as diagnostic assistance, image analysis, and improving the quality of treatment.

This blog aims to answer fundamental questions such as “What exactly is AI?” and “How is AI used in healthcare?” while also covering the latest trends and practical applications for medical professionals in an accessible manner.


A Brief Introduction

I am an internist involved in medical AI research at universities and engaged in the development of AI-powered digital medical devices at startups.

Dr. TAKASAKI Yohsuke, MD, PhD, ScM, MPA, MBA(Cantab), FRSM

AI physician-scientist, serial entrepreneur, and former senior medical officer at the Ministry of Health, Labour and Welfare (MHLW) of Japan. He holds a PhD in Medical Science from Okayama University, an ScM from Harvard University, an MPA from Columbia University, and an MBA from the University of Cambridge.

After graduating from the Faculty of Medicine at Okayama University, he practiced internal and community medicine. He later joined the MHLW, where he served as Director of the Office for Promotion of Medical Information Technology, Director of the Office for Global Strategy of Medical Services and the Health Industry, Director of the Office for Emergency and Perinatal Medicine, and Director of the Office for Disaster Medicine. During his secondment to the Ministry of Education, Culture, Sports, Science and Technology (MEXT), he focused on life sciences; at the Cabinet Office, food safety; and at the Cabinet Secretariat, cybersecurity in the medical field. Internationally, he served as Chief of the Japan–Thailand International Health Cooperation Project under JICA and completed an internship at the World Health Organization (WHO).

After leaving government service, he became involved in healthcare business development and investment strategy at a major Japanese IT company, and also worked with a UK-based venture capital firm. He currently serves as an outside director and has founded multiple startups focused on healthcare digital transformation, medical AI, digital medical device development, and AI-driven behavior change applications. He also operates an internal medicine clinic in Minato City, Tokyo.

He is presently engaged in academia as Visiting Professor at the School of Medicine, Osaka University; Executive Advisor at the Organization for Research and Innovation Strategy, Okayama University; Associate at Cambridge Judge Business School; and Visiting Professor in the Department of Epidemiology at Hiroshima University.

He is a Board-Certified Supervisory Physician in Public Health and Social Medicine, and a Fellow of the Royal Society of Medicine.

(For more details about my background and AI involvement, please refer to the end of this page.)


Why AI in Healthcare Matters

One of the things I constantly realize while working with AI is its rapid advancement. Groundbreaking research is published almost weekly, and new AI products are launched continuously. Keeping up with this information requires substantial effort, and without a foundational understanding of AI, it is easy to feel overwhelmed.

In fact, failing to grasp AI fundamentals now may result in an inability to comprehend its ever-expanding landscape in the future. In other words, now might be the last opportunity to learn AI from the basics.

Limited Resources for Healthcare AI Education

Despite the growing availability of AI-related books and articles, resources tailored for healthcare professionals remain scarce. Additionally, many of these resources are highly specialized, making it difficult for beginners to know where to start.

Even researchers eager to learn Python (a popular programming language for AI implementation) often find themselves struggling with the initial setup. Many feel discouraged by the technical barriers.


Purpose of This Blog

This “AI for Healthcare” blog serves as:

  • An orientation for those new to AI.
  • A platform for information exchange and discussion among AI users.

(A separate blog will focus on topics like AI utilization in medical settings, generative AI in healthcare, AI-driven innovation, and future AI predictions in medicine.)

We will start with “AI Basics You Can No Longer Ignore” from a medical professional’s perspective and gradually expand into the latest AI trends and specialized topics. My goal is to organize and share information while learning alongside you.

(I appreciate any corrections or suggestions to improve the accuracy of the content.)


Who Should Read This Blog?

  • Clinicians: Looking for ways to integrate AI into their practice.
  • Researchers: Exploring AI applications in their studies.
  • Policy makers & public health professionals: Considering AI in policy-making and system development.
  • Healthcare workers (doctors, nurses, pharmacists, lab technicians, administrators, etc.): Interested in leveraging AI to improve patient care.

Conclusion

AI is already making its way into medical practice, from diagnostics and treatment to research and administrative efficiency. Its potential continues to expand across all aspects of healthcare.

Through this blog, I will share essential AI knowledge, real-world applications, and the latest trends. Let’s explore and develop the world of healthcare AI together.


About My Journey with AI

For a detailed resume and professional background, please refer to my LinkedIn profile: https://www.linkedin.com/in/yohsuketakasaki

Here, I will focus on my experiences with AI.

Graduate School Days: Encounter with Social Medicine and Statistics

My journey into AI dates back to my graduate school days. I earned my PhD in medicine from the Department of Hygiene and Preventive Medicine (commonly classified as a social medicine), where the foundation of my studies was epidemiology and statistics. However, at the time, my understanding of statistics was limited to using it as a “tool,” and I did not fully grasp the theories and essence behind it.

Nevertheless, the knowledge of epidemiology and statistics that I acquired in graduate school laid the groundwork for my later entry into the world of AI. I believe that to deeply understand and master AI, three elements are essential:
① Statistics
② Mathematics
③ Computer Science (CS)

However, during my graduate school years, I could not have predicted the current advancements in AI, nor did I imagine that the statistics I was studying at the time would later be useful for learning AI.

By working with vast amounts of data and cultivating an approach to exploring causal relationships and risk assessments, I was able to prepare myself for expanding my studies into mathematics and computer science later on. My experience in graduate school was a valuable step in bridging medicine and AI.


Experience at the Ministry of Health, Labour and Welfare Japan: Between Research and Policy

After joining the Ministry of Health, Labour and Welfare (MHLW) Japan, I was involved in applying public health knowledge to policy development. Government officials have the opportunity to work in diverse fields, including other ministries, local governments, and overseas assignments, typically on a two-year rotation. I also took advantage of the ministry’s study abroad program and completed a master’s degree in social epidemiology at Harvard University and in economics at Columbia University.

At Columbia, I was struck by the extensive use of advanced mathematics and mathematical models in economics, far beyond what I had anticipated. In medical research, we typically conduct animal experiments or randomized controlled trials (RCTs) to eliminate biases and identify causal relationships. However, in economics, interventions such as “deliberately placing individuals in poverty” for experimental purposes are both ethically and practically impossible. Instead, economists construct mathematical models based on real-world data to explain complex social phenomena. This field relies far more on mathematics than medicine does, and I initially struggled with it.

By the end of my master’s program, however, I began to see similarities between medicine, which deals with the human body—a complex system of tens of trillions of interacting cells—and economics, which studies the interactions of billions of people. I was so captivated by this complexity that I even considered pursuing a PhD in economics. (I once took a PhD-level economics course at Columbia and was terrified of failing the course. To this day, I still have recurring nightmares about not earning enough credits and having to repeat a year…)


Risk Assessment at the Cabinet Office and a Reintroduction to Statistics

During my time as a government official, I worked at the Cabinet Office’s Food Safety Commission Secretariat, which scientifically evaluates food safety risks. Our main role was to assess how consuming hazardous substances in food affects human health and the probability of such effects occurring. This work involved gathering evidence from global animal studies and clinical research and quantitatively assessing risks to humans. The position felt like a hybrid between a scientist and a policymaker.

Through this experience, I was once again reminded of the importance of epidemiology and statistics, which led me to systematically relearn them. Around that time, I came across a statistics textbook (which I will introduce later) that was extremely easy to understand and deepened my appreciation for the subject.

Additionally, at the Food Safety Commission, I launched a new division that incorporated ICT, big data, and advanced statistical modeling into food safety risk assessment. As the head of this division, I gained practical experience in applying mathematical models and statistics—an invaluable experience that later facilitated my full-fledged study of AI.


Promoting Medical DX and AI at the Ministry of Health, Labour and Welfare and My Entrepreneurial Aspirations

At the MHLW, I served as the Director of the Emergency and Perinatal Medical Care Office, where I was involved in AI-driven policy planning for emergency medical services. Later, as the Director of the Medical IT Promotion Office, I worked on medical digital transformation (DX), specifically establishing data infrastructure to enable AI applications.

Through my work in advancing healthcare IT, DX, and AI from within the government, I gradually strengthened my resolve:
“In the second half of my career, I want to drive innovation in healthcare IT, DX, and AI as an entrepreneur and dedicate myself to making social security systems sustainable.”

After resigning from government service, I joined a major IT company, where I led new business development and investment strategies in the healthcare sector. I also had the opportunity to be seconded to a UK-based venture capital firm to study startup trends. Concurrently, with my company’s permission, I founded two startups focused on healthcare IT, DX, and AI, and I began seriously diving into AI studies.


Three Essential Elements for Learning AI

As mentioned earlier, I believe mastering AI requires three key elements:
① Statistics
② Mathematics
③ Computer Science (CS)

I had already acquired doctoral-level knowledge of statistics through my PhD and work experience, and I had a graduate-level understanding of mathematics from my economics studies. Therefore, I focused on learning computer science from the ground up.

For AI, the most challenging and time-consuming subject to master is statistics. The mathematics required to operate basic AI systems is at the high school level. However, to read research papers and develop new models, at least a university-level foundation in linear algebra, calculus, statistics, and optimization theory is necessary. To pursue cutting-edge research, advanced university or graduate-level knowledge—such as multivariate analysis, numerical optimization, stochastic processes, information theory, mathematical statistics, graph theory, and numerical analysis—is required.

For computer science, I started learning Python from scratch. Fortunately, I found an excellent learning resource (which I will introduce later) that allowed me to acquire skills efficiently. I realized that programming is best learned by building small, functional projects rather than trying to memorize syntax from the beginning. This approach helped sustain my motivation.


Challenges in Startups: Developing Innovative Medical AI Models

Since 2019, I have continued my studies and have now reached a level where I can create what I envision. While giving lectures and conducting research at universities, I am also working with our startup to develop digital medical devices aimed at saving the lives of mothers and babies. Additionally, we are tackling the creation of AI models so groundbreaking that I boldly describe them as “Nobel Prize-worthy.” While I must be cautious about publicly sharing details due to the nature of startups, we are actively publishing research papers and presenting at academic conferences.

Looking ahead, the era of explosive growth in medical and health data utilization is approaching, facilitated by innovations such as electronic health record-sharing services, nationwide medical information platforms, personal health record (PHR) systems, and regulatory frameworks for next-generation medical data usage. My nonprofit organization (a general incorporated association) is currently patenting a medical AI modeling method called The Formula of Life, based on time-series data analysis. By leveraging this, I aim to create concrete digital solutions from the ever-increasing wealth of medical data.

Although I have a long history in government service, I am committed to continuing my journey as a social entrepreneur, addressing societal and global challenges. I strongly encourage open innovation in The Formula of Life so that many others can benefit from it.


Future Prospects and a Message to Readers

Catching up with AI technology is challenging for any individual alone. I, too, have undergone countless trials and errors. However, there is great potential for healthcare professionals, passionate individuals tackling social security challenges with technology, and AI-driven problem solvers in government, startups, and large enterprises. I hope to support and collaborate with such individuals to drive transformation through AI.

Thank you for reading. I look forward to pioneering new possibilities in healthcare and AI together with you. Please feel free to reach out to me on LinkedIn or other social media if you have any thoughts or interests.

Let’s take this journey forward together!



ご利用規約(免責事項)

当サイト(以下「本サイト」といいます)をご利用になる前に、本ご利用規約(以下「本規約」といいます)をよくお読みください。本サイトを利用された時点で、利用者は本規約の全ての条項に同意したものとみなします。

第1条(目的と情報の性質)

  1. 本サイトは、医療分野におけるAI技術に関する一般的な情報提供および技術的な学習機会の提供を唯一の目的とします。
  2. 本サイトで提供されるすべてのコンテンツ(文章、図表、コード、データセットの紹介等を含みますが、これらに限定されません)は、一般的な学習参考用であり、いかなる場合も医学的な助言、診断、治療、またはこれらに準ずる行為(以下「医行為等」といいます)を提供するものではありません。
  3. 本サイトのコンテンツは、特定の製品、技術、または治療法の有効性、安全性を保証、推奨、または広告・販売促進するものではありません。紹介する技術には研究開発段階のものが含まれており、その臨床応用には、さらなる研究と国内外の規制当局による正式な承認が別途必要です。
  4. 本サイトは、情報提供を目的としたものであり、特定の治療法を推奨するものではありません。健康に関するご懸念やご相談は、必ず専門の医療機関にご相談ください。

第2条(法令等の遵守)
利用者は、本サイトの利用にあたり、医師法、医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律(薬機法)、個人情報の保護に関する法律、医療法、医療広告ガイドライン、その他関連する国内外の全ての法令、条例、規則、および各省庁・学会等が定める最新のガイドライン等を、自らの責任において遵守するものとします。これらの適用判断についても、利用者が自ら関係各所に確認するものとし、本サイトは一切の責任を負いません。

第3条(医療行為における責任)

  1. 本サイトで紹介するAI技術・手法は、あくまで研究段階の技術的解説であり、実際の臨床現場での診断・治療を代替、補助、または推奨するものでは一切ありません。
  2. 医行為等に関する最終的な判断、決定、およびそれに伴う一切の責任は、必ず法律上その資格を認められた医療専門家(医師、歯科医師等)が負うものとします。AIによる出力を、資格を有する専門家による独立した検証および判断を経ずに利用することを固く禁じます。
  3. 本サイトの情報に基づくいかなる行為によって利用者または第三者に損害が生じた場合も、本サイト運営者は一切の責任を負いません。実際の臨床判断に際しては、必ず担当の医療専門家にご相談ください。本サイトの利用によって、利用者と本サイト運営者の間に、医師と患者の関係、またはその他いかなる専門的な関係も成立するものではありません。

第4条(情報の正確性・完全性・有用性)

  1. 本サイトは、掲載する情報(数値、事例、ソースコード、ライブラリのバージョン等)の正確性、完全性、網羅性、有用性、特定目的への適合性、その他一切の事項について、何ら保証するものではありません。
  2. 掲載情報は執筆時点のものであり、予告なく変更または削除されることがあります。また、技術の進展、ライブラリの更新等により、情報は古くなる可能性があります。利用者は、必ず自身で公式ドキュメント等の最新情報を確認し、自らの責任で情報を利用するものとします。

第5条(AI生成コンテンツに関する注意事項)
本サイトのコンテンツには、AIによる提案を基に作成された部分が含まれる場合がありますが、公開にあたっては人間による監修・編集を経ています。利用者が生成AI等を用いる際は、ハルシネーション(事実に基づかない情報の生成)やバイアスのリスクが内在することを十分に理解し、その出力を鵜呑みにすることなく、必ず専門家による検証を行うものとします。

第6条(知的財産権)

  1. 本サイトを構成するすべてのコンテンツに関する著作権、商標権、その他一切の知的財産権は、本サイト運営者または正当な権利を有する第三者に帰属します。
  2. 本サイトのコンテンツを引用、転載、複製、改変、その他の二次利用を行う場合は、著作権法その他関連法規を遵守し、必ず出典を明記するとともに、権利者の許諾を得るなど、適切な手続きを自らの責任で行うものとします。

第7条(プライバシー・倫理)
本サイトで紹介または言及されるデータセット等を利用する場合、利用者は当該データセットに付随するライセンス条件および研究倫理指針を厳格に遵守し、個人情報の匿名化や同意取得の確認など、適用される法規制に基づき必要とされるすべての措置を、自らの責任において講じるものとします。

第8条(利用環境)
本サイトで紹介するソースコードやライブラリは、執筆時点で特定のバージョンおよび実行環境(OS、ハードウェア、依存パッケージ等)を前提としています。利用者の環境における動作を保証するものではなく、互換性の問題等に起因するいかなる不利益・損害についても、本サイト運営者は責任を負いません。

第9条(免責事項)

  1. 本サイト運営者は、利用者が本サイトを利用したこと、または利用できなかったことによって生じる一切の損害(直接損害、間接損害、付随的損害、特別損害、懲罰的損害、逸失利益、データの消失、プログラムの毀損等を含みますが、これらに限定されません)について、その原因の如何を問わず、一切の法的責任を負わないものとします。
  2. 本サイトの利用は、学習および研究目的に限定されるものとし、それ以外の目的での利用はご遠慮ください。
  3. 本サイトの利用に関連して、利用者と第三者との間で紛争が生じた場合、利用者は自らの費用と責任においてこれを解決するものとし、本サイト運営者に一切の迷惑または損害を与えないものとします。
  4. 本サイト運営者は、いつでも予告なく本サイトの運営を中断、中止、または内容を変更できるものとし、これによって利用者に生じたいかなる損害についても責任を負いません。

第10条(規約の変更)
本サイト運営者は、必要と判断した場合、利用者の承諾を得ることなく、いつでも本規約を変更することができます。変更後の規約は、本サイト上に掲載された時点で効力を生じるものとし、利用者は変更後の規約に拘束されるものとします。

第11条(準拠法および合意管轄)
本規約の解釈にあたっては、日本法を準拠法とします。本サイトの利用および本規約に関連して生じる一切の紛争については、東京地方裁判所を第一審の専属的合意管轄裁判所とします。


For J³, may joy follow you.

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

この記事を書いた人

医師・医学博士・AI研究者・連続起業家
元厚生労働省幹部・ハーバード大学理学修士・ケンブリッジ大学MBA・コロンビア大学行政修士(経済)
岡山大学医学部卒業後、内科・地域医療に従事。厚生労働省で複数室長(医療情報・救急災害・国際展開等)を歴任し、内閣官房・内閣府・文部科学省でも医療政策に携わる。
退官後は、日本大手IT企業や英国VCで新規事業開発・投資を担当し、複数の医療スタートアップを創業。現在は医療AI・デジタル医療機器の開発に取り組むとともに、東京都港区で内科クリニックを開業。
複数大学で教授として教育・研究活動に従事し、医療関係者向け医療AIラボ「Medical AI Nexus」、医療メディア「The Health Choice | 健康の選択」を主宰。
ケンブリッジ大学Associate・社会医学系指導医・専門医・The Royal Society of Medicine Fellow

コメント

コメントする

目次